A boolean algebraic approach to semiproper iterations II

Matteo Viale

Dipartimento di Matematica Università di Torino

> 26/1 – 1/2 2014 Czech Republic

Generalized stationarity

Definition

Let X be an uncountable set. A set C is a *club* on $\mathcal{P}(X)$ iff there is a function $f_C : X^{<\omega} \to X$ such that C is the set of elements of $\mathcal{P}(X)$ closed under f_C , i.e.

$$C = \{Y \in \mathcal{P}(X) : f_C[Y]^{<\omega} \subseteq Y\}$$

A set S is stationary on $\mathcal{P}(X)$ iff it intersects every club on $\mathcal{P}(X)$.

Example

The set {*X*} is always stationary since every club contains *X*. Also $\mathcal{P}(X) \setminus \{X\}$ and $[X]^{\kappa}$ are stationary for any $\kappa \leq |X|$ (following the proof of the well-known downwards Löwhenheim-Skolem Theorem). Notice that every element of a club *C* must contain $f_C(\emptyset)$, a fixed element of *X*.

Remark

The reference to the support set *X* for clubs or stationary sets may be omitted, since every set *S* can be club or stationary only on $\bigcup S$.

Given any first-order structure M, from the set M we can define a Skolem function $f_M : M^{<\omega} \to M$ (i.e., a function coding solutions for all existential first-order formulas over M). Then the set C of all elementary submodels of M contains a club (the one corresponding to f_M). Henceforth, every set S stationary on X must contain an elementary submodel of any first-order structure on X.

Definition

The *club filter* on X is

 $CF_X = \{ C \subset \mathcal{P}(X) : C \text{ contains a club} \}.$

Similarly, the non-stationary ideal on X is

 $NS_X = \{A \subset \mathcal{P}(X) : A \text{ not stationary}\}.$

Lemma

 CF_X is a σ -complete filter on $\mathcal{P}(X)$, and the stationary sets are exactly the CF_X -positive sets.

Definition

Given a family { $S_a \subseteq \mathcal{P}(X)$: $a \in X$ }, the *diagonal union* of the family is $\nabla_{a \in X} S_a = \{z \in \mathcal{P}(X) : \exists a \in z \ z \in S_a\}$, and the *diagonal intersection* of the family is $\Delta_{a \in X} S_a = \{z \in \mathcal{P}(X) : \forall a \in z \ z \in S_a\}$.

Lemma (Fodor)

 CF_X is normal, i.e. is closed under diagonal intersection. Equivalently, every function $f : \mathcal{P}(X) \to X$ that is regressive on a CF_X -positive set is constant on a CF_X -positive set.

From now on we shall be interested just in stationary subsets of $[X]^{\aleph_0}$ for suitable uncountable sets *X*.

(SEMI)PROPERNESS

Definition

Let \mathbb{B} be a complete boolean algebra and $M < H_{\theta}$ be countable with $\theta \gg |\mathbb{B}|$.

 $PD_{\aleph_1}(\mathbb{B})$ is the collection of predense subsets of \mathbb{B} of size at most ω_1 . $PD(\mathbb{B})$ is the collection of predense subsets of \mathbb{B} . The boolean value

$$sg(\mathbb{B}, M) = \bigwedge \left\{ \bigvee (D \cap M) : D \in \mathsf{PD}_{\aleph_1}(\mathbb{B}) \cap M \right\}$$

is the *degree of semigenericity* of M with respect to \mathbb{B} . The boolean value

$$gen(\mathbb{B}, M) = \bigwedge \left\{ \bigvee (D \cap M) : D \in \mathsf{PD}(\mathbb{B}) \cap M \right\}$$

is the degree of genericity of M with respect to \mathbb{B} .

Proposition

Let \mathbb{B} be a complete boolean algebra and $M < H_{\theta}$ for some $\theta \gg |\mathbb{B}|$. Then for all $b \in M \cap \mathbb{B}$

 $sg(\mathbb{B} \upharpoonright b, M) = sg(\mathbb{B}, M) \land b.$

$$gen(\mathbb{B} \upharpoonright b, M) = gen(\mathbb{B}, M) \land b.$$

Definition

Let $\ensuremath{\mathbb{B}}$ be a complete boolean algebra.

- B is semiproper (SP) iff for club many M < H_θ in [H_θ]^{ℵ₀} whenever b is in B⁺ ∩ M, we have that sg(B, M) ∧ b > 0_B.
- \mathbb{B} is proper iff for club many $M < H_{\theta}$ in $[H_{\theta}]^{\aleph_0}$ whenever *b* is in $\mathbb{B}^+ \cap M$, we have that $gen(\mathbb{B}, M) \land b > 0_{\mathbb{B}}$.

Baire category theorem for Stone spaces

Let \mathbb{B} be a complete boolean algebra, $X_{\mathbb{B}}$ be the Stone space of its ultrafilters,

$$N_a = \{G \in X_{\mathbb{B}} : a \in G\}.$$

Notice that A is a predense subset of \mathbb{B} iff

$$X_A = \bigcup \{N_a : a \in A\}$$

is open dense in $X_{\mathbb{B}}$ (but in general not regular).

The Baire category theorem holds for $X_{\mathbb{B}}$: If $\{A_n : n \in \omega\}$ is a family of predense subsets of \mathbb{B}

$$X=\bigcap_{n\in\omega}X_{A_n}$$

is comeager in $X_{\mathbb{B}}$, thus

$$\frac{\mathring{X}}{X} = X_{\mathbb{B}}.$$

Let $M < H_{\theta}$ be countable, $\mathbb{B} \in M$, then if $\{B_n : n \in \omega\}$ is the set of predense subsets of $\mathbb{B} \in M$, the classical construction of an *M*-generic filter shows that

$$\bigcap_{n\in\omega} \left(\bigcup \{ N_a : a \in B_n \cap M \} \right) \neq \emptyset.$$

This does not guarantee that

$$\bigcap_{n \in \omega} \left(\bigcup \{ N_a : a \in B_n \cap M \} \right) \text{ is comeager on some } N_b \text{ in } V.$$

Topological characterization of properness

Proposition

 \mathbb{B} is proper if and only if $\forall M < H_{\theta}$ with $\mathbb{B} \in M$, M countable

$$X_M = igcap \{igcap_{A}: a \in B \cap M\} : B \in M ext{ predense subset of } \mathbb{B}\}$$

is such that $\forall c \in M \cap \mathbb{B} \exists b \in \mathbb{B}$ such that X_M is comeager set on $N_b \cap N_c$.

Proof.

As a matter of fact

$$\forall c \in M \cap \mathbb{B} \exists b (N_b \subseteq \overset{\circ}{\overline{X_M}} \cap N_c)$$

 $\iff \forall c \in M \cap \mathbb{B} \exists b \leq \bigwedge \left\{ \bigvee (A \cap M) : A \in M \text{ maximal antichain} \right\} \land c.$

Shelah's semiproperness

Definition

(Shelah) Let *P* be a partial order, and fix $M < H_{\theta}$. Then *q* is a *M*-semigeneric condition for *P* iff for every $\dot{\alpha} \in V^P \cap M$ such that $1_P \Vdash \dot{\alpha} < \check{\omega}_1$,

 $q\Vdash \dot\alpha < M\cap \omega_1.$

P is semiproper in the sense of Shelah if there exists a club *C* of elementary substructures of H_{θ} such that for every countable $M \in C$, there exist a *M*-semigeneric condition below every element of $P \cap M$.

Proposition

Let \mathbb{B} be a complete boolean algebra, and fix $M < H_{\theta}$. Then

$$sg(\mathbb{B}, M) = \bigvee \{q \in \mathbb{B} : q \text{ is a } M \text{-semigeneric condition}\}$$

Proposition

P is semiproper in the sense of Shelah iff RO(P) is semiproper.

Two-step iterations of semiproper posets Recall:

Definition

Let $i : \mathbb{B} \to \mathbb{C}$ be a regular embedding, the *retraction* associated to *i* is the map

$$\pi_i: \mathbb{C} \to \mathbb{B}$$

$$c \mapsto \bigwedge \{b \in \mathbb{B}: i(b) \ge c\}$$

Proposition

Let $i : \mathbb{B} \to \mathbb{C}$ be a regular embedding, $b \in \mathbb{B}$, $c, d \in \mathbb{C}$ be arbitrary. Then,

$$\ \, \bullet \ \, i(b) = b \ hence \ \, \pi_i \ \, is \ \, surjective;$$

2
$$i \circ \pi_i(c) \ge c$$
 hence π_i maps \mathbb{C}^+ to \mathbb{B}^+ ;

3
$$\pi_i$$
 preserves joins, i.e. $\pi_i(\bigvee X) = \bigvee \pi_i[X]$ for all $X \subseteq \mathbb{C}$;

$$i(b) = \bigvee \{e : \pi_i(e) \le b\}.$$

Definition

 $i : \mathbb{B} \to \mathbb{C}$ is semiproper (SP) iff $\mathbb{B} \in SP$ and for club many $M \in [H_{\theta}]^{\aleph_0}$, whenever *c* is in $\mathbb{C}^+ \cap M$ we have that

$$\pi(c \wedge sg(\mathbb{C}, M)) = \pi(c) \wedge sg(\mathbb{B}, M).$$

Proposition

Let $\mathbb B$ be a semiproper complete boolean algebra, and let $\dot{\mathbb C}$ be such that

$$\left[\!\left[\dot{\mathbb{C}} \in \mathsf{SP} \right]\!\right] = \mathbf{1}_{\mathbb{B}},$$

then $\mathbb{D} = \mathbb{B} * \dot{\mathbb{C}}$ and $i_{\mathbb{B} * \dot{\mathbb{C}}} : \mathbb{B} \to \mathbb{D}$ are both semiproper.

Let \mathbb{B} , \mathbb{C}_0 , \mathbb{C}_1 be semiproper complete boolean algebras, and let G be any V-generic filter for \mathbb{B} . Let i_0 , i_1 , j form a commutative diagram of regular embeddings as in the following picture:

Moreover assume that $\mathbb{C}_0/i_0[G]$ is semiproper in V[G] and

$$\left[\mathbb{C}_1/j[\dot{G}_{\mathbb{C}_0}] ext{ is semiproper }
ight]_{\mathbb{C}_0}=1_{\mathbb{C}_0}.$$

Then in V[G], $j/_G : \mathbb{C}_0/_G \to \mathbb{C}_1/_G$ is a semiproper embedding.

Recall:

Definition

Let \mathcal{F} be a complete iteration system of length λ .

• The inverse limit of the iteration is

$$T(\mathcal{F}) = \left\{ f \in \Pi_{\alpha < \lambda} \mathbb{B}_{\alpha} : \forall \alpha \forall \beta > \alpha \ \pi_{\alpha \beta}(f(\beta)) = f(\alpha) \right\}$$

and its elements are called threads.

The direct limit is

$$C(\mathcal{F}) = \left\{ f \in T(\mathcal{F}) : \exists \alpha \forall \beta > \alpha \ f(\beta) = i_{\alpha\beta}(f(\alpha)) \right\}$$

and its elements are called *constant threads*. The support of a constant thread supp(*f*) is the least α such that $i_{\alpha\beta} \circ f(\alpha) = f(\beta)$ for all $\beta \ge \alpha$.

• The revised countable support limit is

$$RCS(\mathcal{F}) = \left\{ f \in T(\mathcal{F}) : f \in C(\mathcal{F}) \lor \exists \alpha \ f(\alpha) \Vdash_{\mathbb{B}_{\alpha}} cf(\check{\lambda}) = \check{\omega} \right\}$$

Assume $\mathcal{F} = \{i_{\alpha\beta} : \alpha \leq \beta < \lambda\}$ is such that

 $\llbracket \mathbb{B}_{\alpha+1}/i[\dot{G}_{\mathbb{B}_{\alpha}}]$ is semiproper $\rrbracket_{\mathbb{B}_{\alpha}} = \mathbf{1}_{\mathbb{B}_{\alpha}}$

for all $\alpha < \lambda$. Let G_{α} be V-generic for \mathbb{B}_{α} . Then

$$\mathcal{F}/\mathbf{G}_{\alpha} = \{i_{\eta\beta}/_{\mathbf{G}_{\alpha}} : \alpha \leq \eta \leq \beta < \lambda\}$$

is in $V[G_{\alpha}]$ an iteration system made of semiproper embeddings.

Definition

An iteration system $\mathcal{F} = \{i_{\alpha\beta} : \alpha \leq \beta < \lambda\}$ is semiproper iff $i_{\alpha\beta}$ is semiproper for all $\alpha \leq \beta < \lambda$. An iteration system $\mathcal{F} = \{i_{\alpha\beta} : \alpha \leq \beta < \lambda\}$ is RCS iff $\mathbb{B}_{\alpha} = \operatorname{RO}(RCS(\mathcal{F} \upharpoonright \alpha))$ for all $\alpha < \lambda$.

Let $\mathcal{F} = \{i_{nm} : n \le m < \omega\}$ be a semiproper iteration system. Then $T(\mathcal{F})$ and the corresponding $i_{n\omega}$ are also semiproper.

Let $\mathcal{F} = \{i_{\alpha\beta} : \mathbb{B}_{\alpha} \to \mathbb{B}_{\beta} : \alpha \leq \beta < \omega_1\}$ be an RCS and semiproper iteration system. Then $C(\mathcal{F})$ and the corresponding $i_{\alpha\omega_1}$ are semiproper.

Let $\mathcal{F} = \{i_{\alpha\beta} : \mathbb{B}_{\alpha} \to \mathbb{B}_{\beta} : \alpha \leq \beta < \lambda\}$ be an RCS and semiproper iteration system such that $C(\mathcal{F})$ is $< \lambda$ -cc. Then $C(\mathcal{F})$ and the corresponding $i_{\alpha\lambda}$ are semiproper.

Theorem

Let $\mathcal{F} = \{i_{\alpha\beta} : \mathbb{B}_{\alpha} \to \mathbb{B}_{\beta} : \alpha \leq \beta < \lambda\}$ be an RCS iteration system, such that for all $\alpha < \beta < \lambda$,

$$\left[\!\left[\mathbb{B}_{eta}/i_{lphaeta}[\dot{\mathsf{G}}_{lpha}]
ight]$$
 is semiproper $\!\left]\!\left]=1_{\mathbb{B}_{a}}
ight.$

and for all α there is a $\beta > \alpha$ such that $\mathbb{B}_{\beta} \Vdash |\mathbb{B}_{\alpha}| \le \omega_1$. Then $\text{RCS}(\mathcal{F})$ and the corresponding $i_{\alpha\lambda}$ are semiproper.

Fact

Let $\mathcal{F} = \{i_{\alpha\beta} : \alpha \leq \beta < \lambda\}$ be a semiproper iteration system, f be in $T(\mathcal{F})$. Then

 $\mathcal{F} \upharpoonright f = \{(i_{\alpha\beta})_{f(\beta)} : \mathbb{B}_{\alpha} \upharpoonright f(\alpha) \to \mathbb{B}_{\beta} \upharpoonright f(\beta) : \alpha \leq \beta < \lambda\}$

is a semiproper iteration system and its associated retractions are the restriction of the original retractions.

Let $\mathcal{F} = \{i_{\alpha\beta} : \mathbb{B}_{\alpha} \to \mathbb{B}_{\beta} : \alpha \leq \beta < \lambda\}$ be an RCS and semiproper iteration system. Let $M < H_{\theta}$ be countable, $g \in M$ be any condition in RCS(\mathcal{F}), $\dot{\alpha} \in M$ be a name for a countable ordinal, $\delta \in M$ be an ordinal smaller than λ .

Then there exists a condition $g' \in \text{RCS}(\mathcal{F}) \cap M$ below g with $g'(\delta) = g(\delta)$ and $g' \wedge i_{\delta}(sg(\mathbb{B}_{\delta}, M))$ forces that $\dot{\alpha} < M \cap \omega_1$. If $\lambda = \omega_1$, then the support of $g' \wedge i_{\delta}(sg(\mathbb{B}_{\delta}, M))$ is contained in $M \cap \omega_1$.